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Intervention is stronger than any purely statistical concept

The notation for an intervention is do(X = x)

Consider Simpson’s paradox

Statistically,  is positively correlated with ; but the intervention 
 decreases 
X Y

do(X = x) Y
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These imply joint probabilities + data-generating factorization

p(x, y, z) = p(y |x, z) × p(x |z) × p(z)
“  is caused 
by  and ”
Y

X Z
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“  is 
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Modeling Cause and Effect

By reparameterizing, we can always rewrite the Bayesian network  
functionally

This is called the structural causal model (SCM), and consists of a  
causal graph + structural equations

X := f(Pa(X), ε)
“X is a function of its parents (causes)


 and a noise term” 

z

x y



We Need Interventions or Assumptions 

To Discover Causality



We Need Interventions or Assumptions 

To Discover Causality

Causal discovery is ill-posed for observational data



We Need Interventions or Assumptions 

To Discover Causality

Causal discovery is ill-posed for observational data

Non-parametrically, no reason to favor the “true” factorization



We Need Interventions or Assumptions 

To Discover Causality

Causal discovery is ill-posed for observational data

Non-parametrically, no reason to favor the “true” factorization

Two (mutually-inclusive) options:



We Need Interventions or Assumptions 

To Discover Causality

Causal discovery is ill-posed for observational data

Non-parametrically, no reason to favor the “true” factorization

Two (mutually-inclusive) options:
• Intervene on the system 



We Need Interventions or Assumptions 

To Discover Causality

Causal discovery is ill-posed for observational data

Non-parametrically, no reason to favor the “true” factorization

Two (mutually-inclusive) options:
• Intervene on the system 
• Make assumptions about the data-generating process
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Example assumptions:
• Lack of causations  statistical independence (Causal Markov)⟹
• Statistical independence  lack of causation (Causal Faithfulness)⟹
• All relevant variables are observed (Causal Sufficiency)
• True causal model maximizes a score function (Causal Identifiability)

All of these assumptions 
break symmetry

We Need Interventions or Assumptions 

To Discover Causality
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Using these notions from causal inference, we’ll talk about
• How to quantify causal strengths
• How to find “hidden common causes” using causal strength
• Using causal strength to discovery causal relationships from  

observational data
• Some concluding thoughts
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Defining Causal Strength

Just as before, definitions are difficult

There are many intuitive statistical/information-theoretic 
attempts

For example:
• Fraction of the variance of  which is controlled by  [ANOVA]Xj Xi
• Kullback-Leibler divergence of marginal vs. conditional 

distribution [Information Flow]
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Defining Causal Strength

Some interventional attempts:
• Kullback-Leibler divergence of interventional distributions 

with/without specified edge [Janzing et al., AOS 2013]

• Differentiating the expected value under :do(Xi = xi)

 [Average Causal Effect]
∂

∂xi
𝔼[Xj |do(Xi = xi)]
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Causal Effects in Linear Models

The linear case is instructive for us

Xj = ∑
Xi∈Pa(Xj)

βi→jXi + ε

Then, it’s intuitive to link  to “causal strength”βi→j

This aligns with the average causal effect, is similar to ANOVA, 
and more

How do we move to nonlinear case?
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Generalizing to Nonlinear Effects

A widely used measure is the average causal effect (ACE):

ACEXi→Xj
≜

∂
∂xi

𝔼[Xj |do(Xi = xi)]

Our alternative is the differential causal effect (DCE) [Butler et al., 
SPL 2022]:

Xj = f(X1, …, XN, ε)

DCEXi→Xj
(xi) ≜ [ ∂

∂Xi
f(X1, …, XN, ε)]

Xi=xi

By differentiating under the integral sign, the ACE is the average 
DCE
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The Average Causal Effect Has Issues

For strength , it’s desirable that𝒮Xi→Xj

𝒮Xi→Xj
≠ 0 ⟺ Xi → Xj

The ACE fails this test!

This is the case whenever the DCE is zero-mean, i.e.
𝔼 [DCEXi→Xj] = 0
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Calculating the DCE is Easy

How we estimate  depends on how we estimate DCEXi→Xj
fj

For many estimators, this is available in closed-form

Even more generally, automatic differentiation makes this easy 
enough

“ForwardAD.png” by MaxEmanuel, 
Wikimedia Commons, CC-BY-SA-4.0

https://commons.wikimedia.org/wiki/Category:CC-BY-SA-4.0


Confounder Detection 
Y. Liu, C, Cui, D. Waxman, K. Butler, and P. M. Djurić,  

"Detecting confounders in multivariate time 

series using strength of causation,"  

Proceedings of the 31st European Signal  
Processing Conference, Helsinki, Finland, 2023.
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Confounders Are Everywhere

Definition: if there exists a variable  causing at least two other  
variables, it is known as a confounder

Z

Confounders complicate causal inference

This complication gets much worse if  is unobservedZ

One of the most common assumptions is causal sufficiency, i.e. 
there are no latent confounders 

z

x y

x y
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Time Simplifies Causal Structure

In time series, we have the “arrow of time”

This disallows causes from the future affecting the present

If sampled with sufficiently high rate, we can also disallow 
“instantaneous causes”

The assumption of no instantaneous causes turns discovery into 
ordinary regression

zt�1 zt

xt�1 xt

yt�1 yt
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Some Existing Work on Confounders

• Finds a modified causal graph with possible 
confoundedness indicated

• Constraint-based methods (e.g., FCI [Spirtes et al., MIT 
Press 2000])

• Score-based methods (e.g., ICF [Drton & Richardson, 
UAI 2004])

• Asymmetry methods (e.g., LiNGAM [Shimizu et al., 
JMLR 2006])

• Some extensions to time series available

• e.g., LPCMCI [Gerhardus & Runge, NeurIPS 2020] and 
VAR-LiNGAM [Hyvärinen et al., ICML 2008]

Structure Learning Confounder Detection
• Aims to detect the presence of a latent confounder

• Spectral methods (e.g., [Janzing & Scholkopf, JCI 
2017])

• ICA-based methods (e.g., [Janzing & Scholkopf, ICML 
2018])

• Information-theoretic techniques (e.g., [Kaltenpoth & 
Vreeken, SDM 2019])

• Our work: extension to time series using latent variable 
models (LVMs) and differential causal effect (DCE)
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Detecting Confounders Through Causal Strength

It is impossible to infer what we can’t see

It is possible to infer what we can’t see (up to diffeomorphism)

Idea: 
1. Learn a latent variable model (LV)
2. Perform inference of latent time series zt
3. Test the DCE of  to zt−i yt

Learn an 
LVM

Test DCE of 
LV

Inference



Gaussian Processes for State Space Models 

Test DCE of 
LV

Inference

Learn an 
LVM



Gaussian Processes for State Space Models 

The exact LVM is not so important, but we desire online learning 
in multivariate time series

Test DCE of 
LV

Inference

Learn an 
LVM



Gaussian Processes for State Space Models 

The exact LVM is not so important, but we desire online learning 
in multivariate time series

We use deep Gaussian process state-space models [Liu et al., TSP 
2023]

Test DCE of 
LV

Inference

Learn an 
LVM



Gaussian Processes for State Space Models 

The exact LVM is not so important, but we desire online learning 
in multivariate time series

We use deep Gaussian process state-space models [Liu et al., TSP 
2023]

These write time-series auto regressively with Gaussian 
processes (GPs)

Test DCE of 
LV

Inference

Learn an 
LVM
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The exact LVM is not so important, but we desire online learning 
in multivariate time series

We use deep Gaussian process state-space models [Liu et al., TSP 
2023]

These write time-series auto regressively with Gaussian 
processes (GPs)

Using a specific GP approximation, they filter on the latent state 
and the GP parameters
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Gaussian Processes for State Space Models 

For testing, the goal is to decide if  (no influence) 
or  (influence)

DCEzk,t−i→yt
= 0

DCEzk,t−i→yt
≠ 0

The best way to do this is unresolved

Two ideas:
1. Test if the credible interval of  contains p % DCEzk,t−i→yt

0

2. Test if exceeds some thresholdPr (DCEzk,t−i→yt
∈ (−ϵ, ϵ))

Test DCE of 
LV

Inference

Learn an 
LVM
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Using the DCE is Justified

Is the causal strength of a latent variable well-defined?

No…

But for scalars, zeroness of the DCE is invariant to a change in 
coordinates:

∂yt

∂zt−i
=

∂yt

∂z′ t−i

∂z′ t−i

∂zt−i
= 0 ×

∂z′ t−i

∂zt−i
= 0.

Therefore, testing for zero-ness is well-defined

Test DCE of 
LV

Inference

Learn an 
LVM
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Our Method Can Detect Confounders

In the Dynamic Case

Correct DCEs for observed variables

Initially nonzero DCE, decaying  
to zero for confounder

zt�2 zt�1 zt

xt�2 xt�1 xt

yt�2 yt�1 yt

t2500



Causal Discovery

D. Waxman, K. Butler, and P. M. Djurić


“DAGMA-DCE: Interpretable, Non-Parametric 

Differentiable Causal Discovery”


Submitted.
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Causal discovery, or causal structure learning, entails learning the 
causal graph

As before: assumptions, assumptions, and more assumptions

Largely, two categories:
1. Constraint-based methods
2. Score-based methods

Discovering Causal Relationships 

Requires Assumptions
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The most historically popular methods are constraint-based

Recall the “causal Markov” and “causal faithfulness assumptions”
Together, statistical conditional independence if and only if encoded by a 
causal relationship

Constraint-based methods test conditional independencies
This can falsify many causal graphs

Famous examples include the PC Algorithm and Fast Causal 
Inference (FCI)

Constraint-Based Methods Exploit

Independencies

C. Glymour, K. Zhang, & P. Spirtes. 
(2019). Review of causal discovery 
methods based on graphical models. 
Frontiers in genetics, 10, 524.
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Constraint-Based Learning is Imperfect

There are a few issues with constraint-based learning:
• Require lots of data (due to CI tests)
• Worst-case exponential run time
• Only an equivalence class of graphs is recovered

Still, they can be a great tool

But we’ll work on score-based methods instead
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MLE-type (or AIC/BIC-type) procedures are very nice

Surprisingly mild assumptions ensure identifiability

For example:
• Linear model with additive non-Gaussian noise (LiNGAM)
• Three-times differentiable, strictly nonlinear with additive 

Gaussian noise

Score-based methods search over DAGs to minimize the MLE/
AIC/BIC

Score-Based Methods Exploit  

Identifiability
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The space of DAGs grows super-exponentially

This poses issues for discrete optimization

Clever approaches (e.g. GES, GEIS) help, but are still slow

We need to avoid searching all DAGs

There are too Many DAGs to do

This Quickly
1: 1

2: 3

3: 25

4: 543

5: 29281

...

14: 1.4×1036
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Let  = binary adjacency matrix of A 𝒢

 = # of paths of length  from  to [Ak]ij
k xi xj

Let’s look at :k = 2
[A2]ij

= ∑ aikakj

NOTEARS [Zheng et al., NeurIPS 2018] characterizes
𝒢 is a DAG ⟺ trace(exp A) − d = 0

Searches over DAGs can then be constrained, continuous 
optimization

Using Continuous Optimization

To Search
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Linear NOTEARS

Linear case [Zheng et al., NeurIPS 2018] is the easiest

Use the linear coefficients as , then solveA
 min

A
∥X − XA∥2

F + λ∥A∥1

s.t. tr (exp (A ⊙ A)) − d = 0

This is well-posed and gets very nice results
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Nonlinear NOTEARS

Nonlinear case [Zheng et al., AISTATS 2020] is similar

Idea: define [A]ij
= ∥∂i fj∥2

Second idea: use a proxy that maintains zeroness
For example, in an MLP, take the L2 norm of the first layer

For parameterized model ℳθ
 min

θ
∥X − fθ(X)∥2

2 + λ∥Aθ∥1

s.t. tr (exp (Aθ ⊙ Aθ)) − d = 0
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Fixing NOTEARS’ Gradients

NOTEARS has poorly behaved gradients

It also uses the augmented Laplacian

Idea: define a class of matrices so that barrier methods work
In this case, M-matrices from econometrics

DAGMA [Bello et al., NeurIPS 2022] then gives a different constraint:
 min

θ
∥X − fθ(X)∥2

F + λ∥Aθ∥1

s.t.  − log (det (s𝕀 − Aθ ⊙ Aθ)) + d log s = 0
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 is Arbitrarily MisspecifiedAθ

DAGMA-MLP defines  using the  normAθ L2

This is arbitrarily detached from ∥∂i fj∥2

Lemma: There exists an MLP with weight matrices 
 and sigmoidal activation such that  

but .
B(1), …, B(M) ∥B(1)

1 ∥2 < ϵ
∥∂i fj∥2 > δ

Proof Idea: for each outgoing edge of  which is small, 
compensate with very large edges in 

B(1)

B(2)
∥∂i fj∥
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We Redefine  using DCEAθ

Define instead Aθ ≜ ∥∂i fj∥L2(ℙX)

We can take a Monte Carlo approximation

[Aθ]ij
≈

1
N

N

∑
n=1

(∂i fj(xn))
2

This is the root-mean-square DCE
∥∂i fj∥
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Our optimization problem stays the same
 min

θ
∥X − fθ(X)∥2

2 + λ∥Aθ∥1

s.t.  − log (det (s𝕀 − Aθ ⊙ Aθ)) + d log s = 0

Notably,  is different!∥Aθ∥1

Whenever the DCE is well-defined and easy to compute, terms 
in this problem are too 
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… Even in Unfavorable Comparisons

Data was generated with MLPs, made to ensure DAGMA 
identifiability

Similar SID

Similar F1

Similar SHD



DAGMA-DCE Orders Variables Differently

Dataset Kendall’s Tau Spearman’s Rho

Additive GPs 0.40 ± 0.09 0.53 ± 0.11

MLPs 0.55 ± 0.06 0.74 ± 0.07



DAGMA-DCE Orders Variables Differently

Can measure orderings with rank correlation

Dataset Kendall’s Tau Spearman’s Rho

Additive GPs 0.40 ± 0.09 0.53 ± 0.11

MLPs 0.55 ± 0.06 0.74 ± 0.07



DAGMA-DCE Orders Variables Differently

Can measure orderings with rank correlation

Both Kendall’s  and Spearman’s  indicate different orderingsτ ρ

Dataset Kendall’s Tau Spearman’s Rho

Additive GPs 0.40 ± 0.09 0.53 ± 0.11

MLPs 0.55 ± 0.06 0.74 ± 0.07
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DAGMA-DCE Does Principled Thresholding

One of the ad-hoc components of NOTEARS+/DAGMA was 
thresholding

DAGMA-DCE still thresholds, but the threshold is interpretable

This allows the expert to decide what’s a relevant effect
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Recap

Causal inference is important to our understanding of signals,  
systems, and their scientific context

Causal relationships have not only a direction, but a strength

Strength is often thrown away 

By incorporating strength, we could
• Detect confounders in multivariate time series
• Increase interpretability in differentiable causal discovery
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Future

Lots of other places to use ML and causal strength in causality

Interesting avenues with “hybrid” causal discovery methods

Interpretability brings opportunities for “workflows”

Together, these empower decision-makers 



Thank You!

Petar Djurić Yuhao LiuChen CuiKurt Butler

Collaborators


