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Abstract

We’ll summarize the key concepts of the current module in a few pages, then thoroughly
work through four or five problems. This material comes from the class slides or the class
textbook [1] unless otherwise noted.

1 Key Concepts

1.1 Probability Baiscs

We began by talking about random events — exactly what that means is a matter of philosophy,
but we’ll just consider these things unpredictable. The set of outcomes in an experiment is the
sample space, often denoted Ω, and an event A ⊂ Ω is a subset of the sample space.

For somewhat technical reasons that occur when we move to continuous spaces, we require the
definition of a σ-algebra1. Denoting the complement of an event A as Ac, σ-algebras are defined as
follows:

Definition 1. A σ-algebra F on a sample space Ω is a collection of events which is closed under
union and complements, and contains the empty set as a member. In symbols:

• If A,B ∈ F , then A ∪B ∈ F (Closed under unions)

• If A ∈ F , then Ac ∈ F (Closed under complements)

• We have ∅ ∈ F (Contains the empty set)

Given some sample space Ω and σ-algebra F , we can then add a notion of probability measure —
as the name implies, this measures how likely an event is to occur.

Definition 2. A probability measure P on a σ-algebra F is a function P : F → R which is non-
negative, countably additive, and assigns measure 1 to the sample space. In symbols:

1I think the reasons why we need a σ-algebra are beyond the scope of this course, and certainly far beyond the
context of this recitation. But if you want to chat a bit about what kind of problems arise without them, feel free to
email me or stop by my office hours.



• For any A ∈ F , we have P(A) ≥ 0 (Non-negative)

• For any A1, A2, · · · ∈ F which are disjoint, we have P (
⋃

iAi) =
∑

i P(Ai) (Countably
additive)

• We have P(Ω) = 1 (Assigns measure 1 to Ω)

Together, the tuple (Ω,F ,P) is called a probability space.

The entirety of the calculus of probabilities follow from these axioms. A few important results are
listed below — proofs can be found in the textbook.

Theorem 1 (Properties of probability measures). Let (Ω,F ,P) be a probability space, and A1, A2 ∈
F . Then

• We have 0 ≤ P(A) ≤ 1

• We have P(Ac) = 1− P(A)

• We have P(∅) = 0

• If A1 ⊂ A2, then P(A1) ≤ P(A2)

• We have P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2)

Under a frequentist view of probability, we can consider the probability to be the fraction of
favorable outcomes of an event when an experiment is repeated. For example, we could interpret a
probability of 0.45 for heads in a coin flip to mean that the coin would, on average, land on heads
45 times if flipped 100 times.

Remark
The mathematical theory of probability all rests on this measure-theoretic treat-
ment. Our theory of probability generally will not. However, if you find this sort
of thing cool, there are many great textbooks on rigorous probability theory, for
example the books by Shiryaev [3] and Durrett [2]. It also lays foundations for
talking about some harder things, like the theory of stochastic processes or filtering
theory.

1.2 Conditional Probability

Often, we are interested in the probability of one event conditioned on another — i.e., the probability
of some event A, given the knowledge that some event B occurs. The common example is that of
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a dice roll: assuming a fair dice, the probability of a 2 is 1
6 . However, if we know the result of the

dice roll was even, then the probability is 1
3 . This intuition is captured in the following definition:

Definition 3. Given probability space (Ω,F ,P) and events A,B, the conditional probability of A
given B, denoted P(A | B), is defined by

P(A | B) =
P(A ∩B)

P(B)
. (1)

One useful aspect of conditional probabilities is the ability to decompose the probability of an event
by using some conditional probabilities of that event. In order to state this theorem, we define a
partition:

Definition 4. A partition of a sample space Ω is a collection of disjoint events B1, . . . , Bn which
cover Ω and are pairwise disjoint. In symbols:

• We have Ω ⊂ B1 ∪ · · · ∪Bn (The set of Bks cover Ω)

• We have B1 ∩ · · · ∩Bn = ∅ (Pairwise disjoint)

Then we can state the following theorem.

Theorem 2 (Total Probability Theorem). For an event A and partition B1, . . . , Bn of Ω, we have

P(A) =

n∑
i=1

P(A | Bi)P(Bi). (2)

We can define one of the most important concepts in probability based off of conditional probabil-
ities: independence.

Definition 5. Two events A and B are said to be independent if P(A∩B) = P(A)P(B). Alterna-
tively, by applying Equation 2, we can write Independence as P(A | B) = P(A), i.e. knowledge of
B occurring does not change our knowledge of A occurring.

1.3 Bayes’ Theorem

From Equation 1, we can write

P(A ∩B) = P(A | B)P(B) = P(B | A)P(A).
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This lets us write down Bayes’ Theorem.

Theorem 3 (Bayes’ Theorem). For events A and B, we have

P(A | B) =
P(B | A)P(A)

P(B)
. (3)

Together, Bayes’ Theorem and the Total Probability Theorem allow us to calculate some probabil-
ities in terms of some others. This sounds vague and pointless, but is actually extremely useful in
real life. We now work through some examples.

2 Examples

I worked through a number of examples for homework problems, both from the course textbook
and other sources. To avoid cheating, they are not included in this version. If you took the course
and want the original version with included problems, please reach out!

References

[1] C.G. Boncelet. Probability, Statistics, and Random Signals. The Oxford series in electrical and
computer engineering. Oxford University Press, 2016. isbn: 9780190200510.

[2] Rick Durrett. Probability: theory and examples. Vol. 49. Cambridge university press, 2019.

[3] Albert N Shiryaev. Probability-1. Vol. 95. Springer, 2016.

4



Module 2 Recitation Notes
ESE 306

Summer Session II 2022
Dan Waxman

Abstract

We’ll summarize the key concepts of the current module in a few pages, then thoroughly
work through four or five problems. This material comes from the class slides or the class
textbook [1] unless otherwise noted.

1 Key Concepts

1.1 Combinatorics

We begin with combinatorics, which is about counting combinations.

One of the first questions you may ask about combinations is how many permutations, or orderings,
of n distinguishable objections there are. We can think of this constructively by choosing object 1,
of which there are n choices, then choosing object 2, of which there are n−1, choices, and repeating
until we’ve exhausted the number of objects.

This means the number of permutations of n distinguishable objects is

n! := n× (n− 1)× · · · × 1. (1)

Permutations are important, but sometimes we’re only interested in permutations of some subset
of objects. For example, perhaps we’re interested in the number of 3-letter ”words.”

In order to achieve this, we begin with the total number of permutations, then divide it by the
number of ways to arrange the remaining n− k objects. Then we make the same construction and
arrive at

n
kP :=

n!

(n− k)!
. (2)

Other times (actually, more commonly,) we’re interested in the number of combinations of k objects
out of n. The distinction here is that we no longer care about ordering: under permutations, we
consider ”abc” and ”cba” as two distinct words, but in terms of combinations, they are the same.



Then we can arrive at the appropriate quantity by ”undoing” the number of permutations in n
kP ,

i.e. (
n

k

)
:=

n!

k!(n− k)!
=

n
kP

k!
. (3)

We can generalize this into partitioning, where we separate n objects intom classes of size k1, . . . , km.

The expression for the number of possible partitions with these quantities is given by

n!

k1! · · · · · km!
. (4)

Note that we can consider
(
n
k

)
as the m = 2 special case here, with the partitions being ”chosen”

or ”not chosen.”

One useful expression is a recursive relation for
(
n
k

)
:(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. (5)

Another really useful result in math is the Binomial Theorem, which allows us to express multino-
mial coefficients in terms of

(
n
k

)
.

Theorem 1 (Binomial Theorem). For any integer n > 0, we have

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k. (6)

The proof for this is by induction using (5).

If we’re concerned with the probability of choose k1 elements from a group of n1 objects, k2
elements from a group of n2 objects, up to kr elements from a group of nr objects, we arrive at a
hypergeometric probability (

n1

k1

)(
n2

k2

)
· · ·

(
nr

kr

)(
n
k

) . (7)

1.2 Discrete Random Variables

The definition of a random variable might not exactly be what you expect
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Definition 1. A random variable (r.v.) is a (measurable1) function X : Ω → R. If the image
{X(ω)|ω ∈ Ω} is countable, then X is said to be a discrete r.v. If the image is uncountable, we say
X is a continuous r.v. This image is called the support of the r.v.

Lots of the theoretical aspects of r.v.s are much easier to develop for the discrete case, so we start
with those. Much of the discussion, however, will be similar to that of continuous r.v.s, mostly
swapping out sums/differences for integrals/derivatives, modulo some measure-theoretic details.

The empirical values of a random variable X are described by its cumulative distribution function.

Definition 2. Given some random variable X on (Ω,F ,P), we can define the cumulative distribu-
tion function (cdf) of X by

FX(x) = P(X ≤ x). (8)

Some important properties of the cdf are summarized below.

Theorem 2. For discrete r.v. X:

• limx→−∞ FX(x) = 0;

• limx→+∞ FX(x) = 1;

• FX(x) is non-decreasing;

• FX(x) is right-continuous;

• P(X > x) = 1− FX(x);

• P(x1 < X ≤ x2) = FX(x2)− FX(x1);

• P(X = x) = FX(x)− FX(x−).

Often, it’s rather inconvenient to specify the cdf FX , and is instead easier to specify the probability
mass function.

Definition 3. Given some discrete r.v. X, the probability mass function (pmf) is the function
defined by

fX(x) := P (X = x) = FX(x)− FX(x−). (9)
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We immediately notice that for r.v. X with support x1, x2, . . . , by the definition of probability,

∞∑
i=1

p(xi) = 1. (10)

The simplest r.v. is a Bernoulli r.v., whose pmf is described by a parameter p:

fX(X = 1) = 1; f(X = 0) = 1− p. (11)

We usually call X = 1 a success and X = 0 a failure.

If we take n independent and identically distributed Bernoulli trials, then the number of successes
is a binomial random variable. If the Bernoulli trials have parameter p, then the pmf of a binomial
r.v. is given by

fX(k) =

(
n

k

)
pk(1− p)n−k. (12)

If we are instead concerned with the number of trials required for a success, then we have a geometric
random variable, whose pmf2 is given by

fX(x) = (1− p)x−1p. (13)

Moving away from Bernoulli trials, we have another important r.v.: the Poisson random variable.
Poisson r.v.s are often used to model the number of occurences of a rare event in some fixed time
frame. Its pmf is given by

fX(x) = e−λλ
x

x!
, (14)

where λ > 0 is the sole parameter.

2 Examples

I worked through a number of examples for homework problems, both from the course textbook
and other sources. To avoid cheating, they are not included in this version. If you took the course
and want the original version with included problems, please reach out!

References

[1] C.G. Boncelet. Probability, Statistics, and Random Signals. The Oxford series in electrical and
computer engineering. Oxford University Press, 2016. isbn: 9780190200510.

2Take as warning that this is convention, and in some other texts the geometric r.v. is used to describe the number
of trials failed before a success
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Module 3 Recitation Notes
ESE 306

Summer Session II 2022
Dan Waxman

Abstract

We’ll summarize the key concepts of the current module in a few pages, then thoroughly
work through a few problems. This material comes from the class slides or the class textbook
[1] unless otherwise noted.

1 Key Concepts

1.1 Review of Random Variables

We begin by reviewing the definition, and some basic properties, of (discrete or continuous) random
variables.

Definition 1. A random variable (r.v.) is a (measurable1) function X : Ω → R. If the image
{X(ω)|ω ∈ Ω} is countable, then X is said to be a discrete r.v. If the image is uncountable, we say
X is a continuous r.v. This image is called the support of the r.v.

The empirical values of a random variable X are described by its cumulative distribution function.

Definition 2. Given some random variable X on (Ω,F ,P), we can define the cumulative distribu-
tion function (cdf) of X by

FX(x) = P(X ≤ x). (1)

Some important properties of the cdf are summarized below.

Theorem 1. For r.v. X with cdf FX(x):

• limx→−∞ FX(x) = 0;

• limx→+∞ FX(x) = 1;

• FX(x) is non-decreasing;



• FX(x) is right-continuous;

• P(X > x) = 1− FX(x);

• P(x1 < X ≤ x2) = FX(x2)− FX(x1);

• P(X = x) = FX(x)− FX(x−).

1.2 Continuous Random Variables

With this discussion of r.v.s/cdfs complete, we can turn to some properties of continuous random
variables. Like mentioned last time, the measure theory gets much more difficult, but from our
perspective the treatment will mostly just swap derivatives for differences and integrals for sums.

Just as it was difficult to deal with the cdf of a discrete r.v., it can be a pain (actually, even more
so) to deal with the cdf of a continous r.v. However, describing a probability mass does not make
sense, since for most continuous distributions P(X = x) = 0 for any x.

So instead we take a slightly different approach: recall that we could define the pmf by taking the
difference FX(x)−FX(x−). Instead of taking the difference, we could imagine taking the derivative,
defining a probability density function. Let’s state this a little differently.

Definition 3. For a continuous r.v. X with cdf FX(x), the probability density function (pdf)
fX(x) is defined to satisfy

FX(x) =

∫ x

−∞
fX(u) du. (2)

If fX(x) exists, we say that X admits the density fX .

By taking the derivative of both sides of (2), we arrive at what was stated before, that

fX(x) =
dFX

dx

∣∣∣∣
x=x

.

Directly from properties of the cdf, we can derive a few properties of the pdf.

Theorem 2. For r.v. X with pdf fX(x):

•
∫∞
−∞ fX(x) = 1
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• P(X = x) = 0

• P(a ≤ X ≤ b) =
∫ b
a fX(u) du

1.3 Some Important Continuous Distribution

We begin with perhaps the simplest distribution, the uniform distribution.

Definition 4. For a < b, an r.v. X is said to be distributed according to the uniform distribution,
denoted X ∼ U(a, b), if it admits pdf

fX(x) =

{
1

b−a a ≤ x ≤ b

0 otherwise.
(3)

In this case, the cdf is easy to recover:

FX(x) =


0 x < a
x−a
b−a a ≤ x ≤ b

1 x > b.

Next, we consider the slightly more sophisticated, but still quite simple exponential distirbution.

Definition 5. For λ > 0, an r.v. X is said to be distributed according to the exponential distri-
bution, denoted X ∼ E(λ), if it admits pdf

fX(x) =

{
λe−λx x ≥ 0

0 x < 0.
(4)

Again, calculating the cdf is not too difficult here:

FX(x) =

∫ x

0
λe−λu du = 1− e−λx.

Finally, we finish with likely the most widely used continuous distribution, the Gaussian (or Nor-
mal) distribution.
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Definition 6. For real µ and σ2 > 0, an r.v. X is said to be normally distribution, denoted
X ∼ N (µ, σ2), if it admits pdf

fX(x) =
1√
2πσ2

exp

[
−1

2σ2
(x− µ)2

]
. (5)

For the Gaussian distribution, the parameter µ is called the mean, and the parameter σ2 is called
the variance. The square root of the variance, σ, is called the standard deviation. When µ = 0 and
σ2 = 1, the resulting distribution N (0, 1) is called the standard normal.

Juxtaposed to the previous few distributions we explored, it’s actually not possible to write down the
Gaussian cdf in terms of elementary functions. Instead, we use look-up tables (or, more realistically
nowadays, a program) to calculate approximate values. We often write the cdf of the standard
normal as Φ(x). Then by taking the r.v.

Z =
X − µ

σ
, (6)

which is normally distributed, we can use Φ(x) to calculate quantiles for any normal r.v.

2 Examples

I worked through a number of examples for homework problems, both from the course textbook
and other sources. To avoid cheating, they are not included in this version. If you took the course
and want the original version with included problems, please reach out!
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Module 4 Recitation Notes
ESE 306

Summer Session II 2022
Dan Waxman

Abstract

We’ll summarize the key concepts of the current module in a few pages, then thoroughly work
through a few problems. In particular, we will focus on joint random variables, as expectations
are not on Quiz 4. This material comes from the class slides or the class textbook [1] unless
otherwise noted.

1 Key Concepts

1.1 Joint Random Variables

Consider the case where we have a number of random variables, X1, X2, . . . , Xn, which are related
to each other. For example, we can take n = 2, and consider X1 to be the height of a person and
X2 to be the weight of a person. Clearly, X1 and X2 are related: a taller person, on average, tends
to be heavier.

It might make sense to model the height of people and weight of people separately, but since they’re
related it makes more sense to make a joint model; i.e., pX1,X2(x1, x2) giving the probability of
some height X1 and weight X2. In this two-variable case, pX1,X2 is called a bivariate distribution.

Just as in the univariate case, there are a few ways to describe the empirical properties of joint
random variables. We start with the CDF, which is the same in both the discrete and continuous
case.

Definition 1. The cumulative distribution function of random variables X1, X2, . . . , Xn is a func-
tion FX1,X2,...,Xn(x1, x2, . . . , xn) : Ω1 × · · · × Ωn → [0, 1] given by

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn). (1)

The CDF has the properties one would expect from the univariate case. We list a few here.

Theorem 1. Let X1, X2 be random variables with joint cdf FX1,X2(x1, x2) and marginal cdfs
FX1(x1) and FX2(x2). Then:

• FX1(x1) = limx2→∞ FX1,X2(x1, x2).



• FX2(x2) = limx1→∞ FX1,X2(x1, x2).

• limx1→−∞ FX1,X2(x1, x2) = 0.

• limx2→−∞ FX1,X2(x1, x2) = 0.

• For x1 ≤ x′1 and x2 ≤ x′2, we have FX1,X2(x1, x2) ≤ FX1,X2(x
′
1, x

′
2).

• lim(x1,x2)→(∞,∞) FX1,X2(x1, x2) = 1.

For discrete joint random variables, we use a pmf, and for continuous joint random variables, we
use a pdf.

Definition 2. The joint probability mass function of discrete random variables X1, X2, . . . , XN is
given by

pX1,...,XN
(x1, . . . , xn) = P(X1 = x1, . . . , XN = xN ). (2)

The joint probability density function of continuous random variables X1, . . . , XN with joint cdf
FX1,...,XN

is a function fX1,...,XN
such that

FX1,...,XN
(x1, . . . , xn) =

∫ x1

−∞
· · ·

∫ xN

−∞
fX1,...,XN

(x1, . . . , xN ) dx1 . . . dxN . (3)

Note that the sum over all values of Xk for each k must be 1 in a set of discrete r.v.s, and the
corresponding integral evaluate to unity in a set of continuous r.v.s. This is because the sum
(integral) of a pmf (pdf) over a region B equals the probability that (x1, . . . , xN ) ∈ B.

1.2 Marginal Probabilities

Recall the bivariate example of before, where X1 is height and X2 is weight. Despite these obviously
being related to each other, it often makes sense to talk about the distribution of height, or the
distribution of weight, separately. For example, consider the distribution of height for adult men
gathered from data in North America, Europe, East Asia, and Australia in Figure 1 [2]. This can
still be interesting and valuable information, despite not knowing specific weights, socioeconomic
standing, etc. which also tend to influence this.

These sorts of distributions are called marginal distributions, and the process of getting fX1(x1)
from fX1,X2(x1, x2) is called marginalizing. This looks similar for discrete and continuous random
variables, with the different being a sum vs. an integral. For example, if X1, X2 were discrete, we’d
write

pX1(x1) =
∑

x2∈Ω2

pX1,X2(x1, x2).
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Figure 1: Distribution of male and female heights [2].

Meanwhile, if there were continuous, we’d write

fX1(x1) =

∫
x2∈Ω2

fX1,X2(x1, x2) dx2.

Note that the marginal distribution fX1 is different, but related to, the conditional distribution
fX1|X2

. In particular, we can view the marginal distribution as a weighted average of the conditional
distribution. This is because

fX1,X2(x1, x2) = fX1|X2
(x1 | x2)fX2(x2), (4)

so (e.g. in the continuous case)

fX1(x1) =

∫
Ω2

fX1,X2(x1, x2) dx2

=

∫
Ω2

fX1|X2
(x1 | x2)fX2(x2) dx2

= EfX2
[f(x1 | x2)].
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2 Examples

I worked through a number of examples for homework problems, both from the course textbook
and other sources. To avoid cheating, they are not included in this version. If you took the course
and want the original version with included problems, please reach out!
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